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1. Introduction 
  
      Ocean observational current data are usually 
acquired from limited number of stations in 
domains with open boundaries and contain 
various errors or noises. It is an important task for 
physical oceanographers to establish (or to 
reconstruct) a realistic and complete velocity field 
from sparse and noisy data. 
     From a mathematical point of view, the 
reconstruction requires solving a least square 
problem without or with a priori information (limit) 
on\ the circulation characteristics. An a priori limit 
can be formulated as a set of inequalities that the 
solutions should satisfy, as a dynamical model 
applied to the description of circulation dynamics 
or hypotheses on statistical properties of 
reconstructed field. 
      Several techniques are available for fulfilling 
such a task: various kinds of spline interpolation 
(Washba and Wendelberger,1980; Smith and 
Wessel, 1990; Brankart and Brasseur, 1996; and 
others), optimal interpolation (OI, e.g., Gandin, 
1965), fitting models (Cho et al., 1998, Lipphardt 
et al., 1977, 2000 and others), objective mapping  
combined with a fitting (e.g., Davis, 1985) and 
numerous approaches using ocean numerical 
models, such as the adjoint method, Kalman 
filter, etc. (e.g., Malonette-Rizzoli and 
Tziperman,1996). 
      Several error sources deteriorate the 
reconstruction skill. One of them is the 
uncertainty in boundary conditions (Bennett, 
1992), especially at open boundaries. Therefore, 
how to determine  open boundary conditions 
becomes a key issue in  the reconstruction 
process. 
     The classical OI technique does not allow 
accounting for any boundary condition as an a 
priori limitation. To overcome this weakness, 
Davis (1985) suggested to use a combined OI-
spectral fitting model with a priori knowledge of 
the statistical weights. It remains uncertain how 
to select the weights for an open domain and 
how to determine basis functions with a priori 
non-zero flux at the open boundary. 
      With velocities given along the open 
boundary and with an additional boundary 
condition such as the ``natural'' boundary 
condition (Courant and Hilbert, 1966), the spline 
functions can be used as universal basis 
functions. However, a detailed analysis (Inoue, 
1986) shows that the natural boundary condition 

is more appropriate for rigid than open 
boundaries. 
      Without knowing statistical weights and 
without using ocean numerical models, a 
kinematical method is proposed for 
reconstructing a velocity field from noisy and 
sparse data. For a three-dimensional 
incompressible flow,  two scalar functions, 
toroidal () and poloidal  () potentials, satisfy 
Poisson equations with the vertical vorticity and 
vertical velocity as the sources terms, 
respectively (Moffat,1976; Eremeev et al. 
1992a,b; Chu, 1999). 
      In this study, a new set of basis functions is 
introduced for reconstructing the ocean 
circulation in a domain with open boundaries. 
These functions are the eigenfunctions of 
Laplacian operator with homogeneous mixed 
(Robin or Newton) conditions. With known 
velocities along the open boundary,  the mixed 
boundary conditions are accurate. With unknown 
velocities along the open boundary, a 
parameterization scheme is proposed for 
obtaining  approximate open boundary conditions 
from data. In general, the reconstruction is 
reduced to linear and nonlinear regression 
models for known and unknown velocities along 
the open boundary, respectively. For the latter 
(without data on the open boundary),  the velocity  
inside the domain and along the boundaries are 
simultaneously determined. 
  
2. Two Scalar Potentials 
  
2.1. Toroidal and Poloidal Components 
  
      In magnetohydrodynamics and astrophysics, 
it is common to decompose any vector Q  in 
arbitrary coordinate system into three parts 
(Dubrovin et al., 1992). On example, it is in 
spherical coordinate system written as 
         Q = r A1 + r A2 +  A3,                   (1)  
where A1, A2 and A3 are scalar functions, r is the 
radius vector from the origin. Borrowing this idea 
for ocean currents (Q =u} satisfying  the 
incompressible property,  
           u = 0                                             (2) 
the three dimensional velocity field at large-, 
meso- and  submeso-scales is represented by  
          u =   (r ) +   (r ) (3) 
where the two terms in the right hand side of (3) 
are called toroidal and poloidal velocities. 



  
If the velocity is reconstructed on horizontal 
planes, the radius vector r can be replaced by the 
unit vector in the vertical direction k (Moffat, 
1978). Thus, the velocity u (u,v,w), determined  
on any horizontal plane, is represented by 
(Eremeev et al., 1992 a, b) 
u= /y + 2/xz,   
v= -/x + 2/yz, 
w= -                                             (4) 
where the Cartesian coordinate system is used 
with (x, y)  and z as the horizontal and vertical 
coordinates, respectively. 
      Obviously, both toroidal and poloidal 
potentials satisfy the Poisson equations  
      = - ,          = -w                    (5)                           

      (b) Three reasons make the basis functions 
defined here more appropriate than trigonometric 
polynomials (plane geometry) and spherical 
harmonics (spherical geometry) in flow 
reconstruction from noisy and sparse data. First, 
the trigonometric polynomials and spherical 
harmonics are not  the solutions of (5)-(7) for a 
domain with complex boundaries and/or with    
varying along the open boundary. That is to say 
that the trigonometric polynomials and spherical 
harmonics cannot formulate a complete set of 
basis functions in this case. Second, the spectral 
series usually converges quicker using the basis 
functions determined by (5)-(7) than using 
trigonometric polynomials and spherical 
harmonics since the physical information at the 
boundary is sufficiently used. This leads to fewer 
modes needed  as the basis functions than using 
the trigonometric polynomials and spherical 
harmonics. 

Here,  
       = 2/x2 +  2/y2  
is the two-dimensional Laplacian operator, and  
is the vertical component of vorticity. 
      In general, the toroidal () and poloidal  () 
potentials  are not the same as the geostrophic 
stream function and velocity potential commonly 
used in meteorology and oceanography (e.g., 
Lynch 1988). If the Coriolis parameter varies 
considerably within the domain, the poloidal 
potential satisfies Poisson equation with a source 
term  determined by the horizontal velocity and 
the gradient of the Coriolis parameter even in the 
pure geostrophic flow. That can be checked out 
through the direct substitution of (4) into the 
geostrophic equations. 
  
3. Basis Functions 
  
       For a simply-connected open domain (Fig. 
1), the normal and tangential velocity 
components (Vn, V) are usually non-zero at the 
open boundary ’.  The potentials have no 
physical significance themselves 
(Ladyzhenskaya, 1969). They are meaningful 
only in representing the circulation. To reduce the 
degree of freedom without loss of any generality, 
the poloidal kinetic energy is assumed averaged 
over the domain including the open boundary 
segment (’) to be minimal and obtain  
/z = 0,  [/n + ()]=0    at  ’.          (6) 
The boundary condition for the rigid segment () 
is represented by 
/n = 0,  =0    at  .     (7) 
The basis functions {k}, {m} can be derived 
from Poisson equations  (5) with boundary 
conditions (6) and (7). They have the following 
features: 
      (a) Each of the two sets of basis functions 
{k} and {m} is orthonormal and complete 
(Vladimirov, 1971). To calculate directly these 
basis functions, it requires a priori knowledge of 
geometry and velocity components at the 

boundary (i.e., a known boundary condition). For 
unknown boundary conditions, a nonlinear 
regression scheme should be developed. 

      (c) If normal and tangential velocities along 
the open boundary change with time, the   
coefficient   also depends on time. The velocity 
field should be reconstructed at a particular time. 
This usually does not add any complexity to the 
reconstruction.  
      (d) The approach can be extended to a 
multiply-connected domain through the 
methodology originally described by 
Kamenkovich (1961).  
      (e) The basis functions {k}, {m}  have no 
physical significance themselves. They are 
meaningful only in representing the circulation 
(Ladyzhenskaya, 1969; Lynch, 1988). 
 
4. Five-Step Scheme 
 
      A five-step scheme is developed to 
reconstruct velocity from sparse and noisy data in 
an open domain: (a) a boundary extension 
method to determine normal and tangential 
velocities at an open boundary, (b) establishment 
of  homogeneous open boundary conditions for 
the two potentials with a spatially-varying 
coefficient, (), (c) spectral expansion of  (), 
(d) determination of basis functions for the two 
potentials for the spectral decomposition using 
homogeneous boundary conditions, and (e) 
determination of coefficients in the spectral 
decomposition of  velocity and () using linear 
or nonlinear regressions. Among them, the first 
four steps are new. 
 
5. Texas-Louisiana Shelf Circulation 
Reconstructed from Lagrangian Drifter Data 
 
      Two types (Eulerian and Lagrangian) are 
available in ocean velocity measurements. The 



Eulerian-type is to measure the current at a 
certain location (e.g., current meter, and ADCP). 
The Lagragian-type is to measure the current 
through trajectories of drifting buoys. The 
Lagrangain drifting buoys provide near real-time 
current information of currents with revealing 
detailed eddy structures   (Davis, 1991, Davis, 
1998, Lie et al., 1998; Gartfield et al., 1999 and 
others) and became popular recently. For 
example, more than 50 drifters were deployed 
during   Louisiana - Texas Shelf  Experiment 
(LATEX) sponsored by MMS.  

From theoretical point of view,  the 
Lagrangian and Eulerian frames should be 
equivalent in describing fluid dynamics (Landau 
and Lifshits, 1989), however, they are different in 
practical. The Lagrangain (drifting buoy) data are 
more complicated than the Eulerian data. Drifter 
trajectories show a wide spectrum of oceanic 
motion including meso and sub-mesoscale 
eddies, waves, inertial and semidiurnal currents 
(Thomson et al., 1998, Garfield  et al., 1999 and 
others).  

Currently, most ocean hindcast/forecast 
systems have capability to assimilate 
observational data in Eulerian frame such as 
satellite (e.g., sea surface temperature, sea 
surface height) and hydrographic (e.g., XBT, 
CTD, …) and occasionally Eulerian velocity data 
(Malanotte-Rizzoli and Tziperman, 1996).  But, 
no system has capability to assimilate 
observational data in Lagrangian frame, 
especially the velocity data. This is caused by the 
complexity of   Lagrangian data.  Since the drifter 
trajectories show a wide spectrum of oceanic 
motion including meso and sub-mesoscale 
eddies, waves, inertial and semidiurnal currents, 
the inherent variability of the ocean current 
structure  can be better represented and 
forecasted  if  Lagrangian trajectories of drifting 
buoys are assimilated into the model. 

Thus, two items are crucial for 
hindcast/forecast of the Gulf of Mexico (GOM) 
deepwater and shelf circulations: (1) effectively 
utilizing   Lagrangian and Eulerian velocity data  
in order to  make first order estimates of oil spill 
trajectories, and (2)  optimally assimilating  
Lagrangian and Eulerian velocity data into an 
ocean numerical model for hindcast/forecast of  
oil spill trajectories. To do so, we need to 
transform Lagragian  into Eulerian data. 

Recently, the principal investigator and 
his colleagues at NPS developed a new scheme 
on the base of two-scalar (toroidal and poroidal) 
flow representation to reconstruct velocity field 
from sparse and noisy data (Chu et al, 2001a,b).  
This scheme has a capability to process the 
drifting buoy data and to transform them into 
Eulerian frame. For example, we successfully 
reconstructed  the Louisana shelf  circulation 
from LATEX drifting buoy trajectories (Fig. 1).   In 
this proposal, we plan to develop GOM  

reconstruct and assimilation system for effective 
utilization of both Lagrangain and Eulerian data.  
      In Figure 2, the  dots denote the location of 
drifters; the light arrows represent  the surface 
winds. The time bar (indicating different date) is 
located at the upleft  corner of each panel. The 
reconstructed shelf circulation is closely related 
to the surface winds.  For example, strong 
northeast winds  (three right panels) drive strong 
southwestward currents (maximum 80 cm/s) 
along the coast; weak winds (two left bottom 
panels) cause weak currents.  

  
6. Conclusions 

  
       First, a five-step scheme is developed to 
reconstruct velocity from sparse and noisy data in 
an open domain.    
       Second, the homogeneous boundary 
conditions of (, ) at both rigid and open 
boundary segments make it possible to obtain 
basis functions for an open domain. The basis 
functions are the eigenfunctions of the Laplacian 
operator with homogeneous boundary conditions 
and depends on the spectrally-varying 
parameter,  , at the open boundary. 
       Third,  the spectra of the two horizontal 
velocity components and   are truncated. The 
optimal mode truncation is determined through a 
modified cost function, which is constructed \ on 
the basis of model capability and data 
reproduction complexity (penalty). This cost 
function is also used to verify the model 
reconstruction skill from sparse and noisy data. 
      Fourth, the spectral coefficients for horizontal 
velocity and  are determined simultaneously 
using the stabilized least square (SLS) method. 
This method does not require a priori knowledge 
about noise and is robust to the size of 
observational samples used for the 
reconstruction. 
      Fifth, after reconstructing the horizontal 
velocity field at various depths, the vertical 
velocity may be reconstructed through solving the 
integral equation numerically. Since the 
coefficient matrix is square, the minimum 
sensitivity  of solution is used to determine the 
regularization parameter and then use Tikhonov's 
approach to reconstruct the vertical velocity. 
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Fig. 2. Temporal variation of Texas-Louisiana shelf surface currents (Dec 15, 1993 – March 

15, 1994) reconstructed from LATEX SCULP-1 (surface floats) data using two-scalar potential 
method. The dots denote the position of drifters and light  arrows indicate the surface wind vectors.     
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